Guaranteed-Quality Higher-Order Triangular Meshing of 2D Domains
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Fig. 1. Higher-order mesh of cubic polynomial triangle elements, precisely conforming to a given domain boundary. By construction our mesh generation
algorithm guarantees that the scaled Jacobian quality measure respects a prescribed adjustable bound, here [0.7, 1.0], MIPS distortion of all elements (away
from possibly prescribed sharp corners) likewise is bounded, here everywhere below 3.75, and, consequently, inner angles of all curved triangles are bounded
as well. The histograms (log scale) show the distribution of these values over the entire mesh.

We present a guaranteed quality mesh generation algorithm for the curvi-
linear triangulation of planar domains with piecewise polynomial boundary.
The resulting mesh consists of higher-order triangular elements which are
not only regular (i.e., with injective geometric map) but respect strict bounds
on quality measures like scaled Jacobian and MIPS distortion. This also
implies that the curved triangles’ inner angles are bounded from above
and below. These are key quality criteria, for instance, in the field of finite
element analysis. The domain boundary is reproduced exactly, without geo-
metric approximation error. The central idea is to transform the curvilinear
meshing problem into a linear meshing problem via a carefully constructed
transformation of bounded distortion, enabling us to leverage key results on
guaranteed-quality straight-edge triangulation. The transformation is based
on a simple yet general construction and observations about convergence
properties of curves under subdivision. Our algorithm can handle arbitrary
polynomial order, arbitrarily sharp corners, feature and interface curves,
and can be executed using rational arithmetic for strict reliability.
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1 INTRODUCTION

Triangulation is used for purposes of domain discretization in ap-
plications across many different fields. Often, the resulting meshes’
quality is of relevance for subsequent computational tasks. In the
field of finite element methods (FEM), for instance, meshes of low
quality easily contribute to ill-conditioning of the system to be
solved and to degradation of convergence rates [Babuska and Aziz
1976; Brandts et al. 2011; Fried 1972; Oswald 2015; Shewchuk 2002b;
Vavasis 1996]. While poor mesh quality can be masked to some
extent, in efforts to decouple simulation accuracy from mesh quality
[Schneider et al. 2018], overall the problem of guaranteed-quality
mesh generation remains relevant.

While the concrete notion of mesh quality is application depen-
dent, a common key quality indicator—in the context of linear mesh
generation, with straight-sided triangle elements—is the range of
inner angles. While the conceptual optimum of an all-equilateral
mesh cannot be achieved in general [Colin de Verdiére and Marin
1990; Shewchuk 2002a], various mesh generation algorithms have
been described that guarantee lower and upper bounds on these
angles [Chew 1989, 1993; Ruppert 1995; Shewchuk 2002a].

In the field of higher-order mesh generation, however, the notion
of quality becomes more intricate. In this case elements are triangu-
lar images defined by polynomial maps and exhibit curved edges.
In contrast to the linear case, element quality cannot be assessed
by the triangles’ inner angles alone. The pointwise angular distor-
tion of the map needs to be considered, for instance by means of
the MIPS measure, which is relevant in this case [Schneider et al.
2018]. Furthermore, the maps’ derivatives (scaled Jacobian) as well
as the magnitude of higher-order derivatives are of importance
particularly in FEM [Ciarlet and Raviart 1972b; Engvall and Evans
2020]. While existing higher-order mesh generation methods pro-
duce output of high quality in many cases, this cannot be relied on
as they do not provide guarantees on any of these quality measures.
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Fig. 2. Approach overview. Prescribed domain curves (a) are covered by envelope elements (b). These are refined so as to satisfy certain geometric properties
including spatial disjointness (c). A set of straight line segments derived from these envelopes (d) are used as constraints in a constrained linear meshing
problem (e). Each envelope element comes with a polynomial transformation maps; it is applied to all triangles lying within the respective envelope element in
the linear triangulation. In this way the mesh is transformed into a curve-conforming higher-order mesh (f). Its quality is guaranteed through a combination
of the linear mesh’s angle guarantees and the transformation maps’ distortion properties. (Grey curves indicate isolines of the elements’ geometric maps.)

Hence the problem of guaranteed-quality mesh generation largely
remains open in the higher-order setting. This setting is of increas-
ing relevance, in particular in the context of FEM and isogeometric
techniques, in fluid simulation, animation, and analysis [Wang et al.
2013].

1.1 Contribution

In this paper we introduce a guaranteed-quality higher-order 2D
mesh generation method. In particular, the method and its resulting
meshes provably posses the following properties:

(1) Elements are injective polynomial triangles.

(2) Arbitrary polynomial order is supported.

(3) Elements conform precisely to curved domain boundaries.
(4) The scaled Jacobian measure is larger than p everywhere.
(5) MIPS distortion is smaller than y away from domain corners.

The involved bounds p and p are parameters that can be chosen
within certain ranges. In principle, the scaled Jacobian can be driven
arbitrarily close to 1. The desired MIPS distortion bound p (relative
to an ideal, equilateral element) can be set to any value > 3.5. This
also implies a minimal angle bound for all curved triangles in the
output, away from sharp domain corners. The specific value of 3.5
is in accordance with the currently best minimal angle guarantees
available in the field of linear mesh generation (cf. Sec. 5.1).

The output’s complexity is sensitive to these parameter choices
in the sense that extremely tight settings may lead to very dense
meshes, whereas looser settings yield simpler results.

1.2 Approach

Figure 2 illustrates the main steps of our approach: First, we con-
struct envelopes, consisting of a series of quadrilateral elements, for
each input curve, completely covering it from both sides (Fig. 2b),
overall enveloping these curves. As long as these envelope elements
either intersect, mutually form corners too sharp, or contain curve
pieces too complex, we replace them by smaller substitutes in a
recursive bisection process (Fig. 2c). This process, provably, termi-
nates.

Second, we consider a set of straight line segments defined by
these envelope elements (Fig. 2d), and generate a high-quality linear
triangulation constrained by these segments (Fig. 2e). This can be
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done using established constrained linear mesh generation methods
that guarantee bounded angles [Miller et al. 2003; Ruppert 1995].

Finally, we exploit that, by our manner of construction, each
envelope element comes with a polynomial warp map. We apply
these to the generated triangles lying inside the envelopes, turning
them into curved higher-order triangles. This yields a higher-order
mesh precisely conforming to the domain curves (Fig. 2f). Through
an interplay of distortion bounds (that we ensure for the warp maps
by construction) and angle bounds (respected by the linear mesh),
the quality of our resulting mesh is guaranteed, with strict bounds
on angles and scaled Jacobians.

It is worth remarking that the recent Bézier Guarding method
[Mandad and Campen 2020a] follows a similar idea, covering do-
main curves by explicitly constructed elements in combination with
linear mesh generation. As a key difference, though, that method pro-
vides no quality guarantees beyond injectivity. In order to achieve
quality guarantees, the method we propose differs fundamentally
in its envelope construction and the use of warp maps, and requires
different and additional convergence and termination arguments.

2 RELATED WORK

A vast amount of work has been spent on both linear and higher
order mesh generation problems over the last few decades. We
briefly discuss relevant work with a focus on techniques offering
injectivity and quality guarantees on the meshes’ elements. For a
broader overview we refer to surveys [Cheng et al. 2012; Owen 1998;
Wang et al. 2013] and literature reviews in recent works such as
[Mandad and Campen 2020a; Turner et al. 2018].

2.1 Injectivity Guarantee

Mesh elements can be considered images of an ideal (reference or
master) element under some deforming geometric map. This map’s
injectivity is a vital property in many applications. Generating a
2D conforming triangulation with injective linear elements is a
long-solved task [de Berg et al. 2000; Fournier and Montuno 1984;
Toussaint 1984]; injectivity boils down to ensuring a common ori-
entation for all the triangular elements, i.e., excluding flips.

The problem of higher-order 2D triangulation, by contrast, is more
involved since injectivity in this case is a per point rather than a



per element issue. While methods have been proposed to test for
injectivity of such elements [Dey et al. 1999; George and Borouchaki
2012; Gravesen et al. 2014; Hernandez-Mederos et al. 2006], only a
few mesh generation methods can actually generate an output with
guaranteed injective polynomial elements.

Methods in this field can generally be classified as indirect or
direct [Dey et al. 1999]. Indirect methods generate a linear triangu-
lation (easily with injectivity guarantee) followed by incrementally
deforming (i.e., curving) the elements in order to achieve confor-
mance with prescribed domain boundaries [Abgrall et al. 2014; Hu
et al. 2019; Moxey et al. 2016; Toulorge et al. 2013]. When constrain-
ing the deformation to preserve injectivity, there is no guarantee
that conformance will be achieved in all cases. Direct methods cre-
ate elements with curved edges right away. In this case elements,
however, come without geometric maps [Boivin and Ollivier-Gooch
2002], come with non-polynomial geometric maps [Gordon and
Hall 1973; Haber et al. 1981], or require additional assumptions
(e.g. regarding smoothness) on the input [Ciarlet and Raviart 1972a;
Rangarajan and Lew 2014].

A recently proposed approach [Mandad and Campen 2020a] guar-
antees both, injectivity and conformance to the domain boundary. It,
however, provides no further quality guarantees over the curvilinear
elements. In the worst case, elements (while injective by construc-
tion) can be arbitrarily distorted, their inner angles be arbitrarily
small. Higher-order remeshing techniques may often be able to im-
prove the mesh in a post-process [Hu et al. 2019], but these do not
provide any quality guarantees (beyond what their input already
offers) either.

Our approach, by contrast, in addition to ensuring injectivity,
provides guarantees on the quality of the mesh right away, with
strict bounds on angles, MIPS distortion, and scaled Jacobians.

2.2 Quality Guarantee

Since the introduction of the first provably good conforming De-
launay refinement algorithm [Chew 1989], many algorithms have
been proposed improving upon the guarantees on mesh quality,
grading, and size [Bern et al. 1994; Chew 1993; Erten and Ungor
2009; Ruppert 1995; Shewchuk 2002a], relaxing input requirements,
and improving the theoretical bounds [Miller et al. 2003; Pav 2003;
Rand 2011a,b]. These methods are able to generate guaranteed qual-
ity meshes with bounds on angles, but are limited to generating
conforming meshes of planar straight line graphs, i.e., meshes with
linear elements aligned with piecewise linear domain boundaries.

While a few extensions to accommodate curved boundaries have
also been proposed [Boivin and Ollivier-Gooch 2002; Gosselin and
Ollivier-Gooch 2007; Pav and Walkington 2005; Rangarajan and
Lew 2014], they provide guaranteed bounds only over the curved
triangles’ inner angles. The construction of valid injective polyno-
mial geometric maps per triangular element (or even just ensuring
their existence) with any kind of quality guarantee is not part of
the consideration.

By contrast, our approach generates meshes exhibiting an in-
jective higher-order polynomial map with guaranteed quality per
element and can handle boundary, feature, and interface curves of
arbitrary polynomial order without any smoothness requirements.
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Zc = max(|Zp1popsl. | Zp2p3pol)
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Fig. 3. A Bézier curve c with its 4 control points and its 3 control vectors.
This curve’s control angle Zc is defined as the larger of the two absolute
angles formed by the curves’ end tangents with the curve’s base line pops.

3 HIGHER-ORDER MESH BASICS

In order to formulate our algorithm, we first introduce a few key
definitions and basic constructions that we will leverage throughout
our exposition. We represent all polynomials (for curves as well as
triangular elements) in the Bernstein basis. Conversion to and from
other commonly used bases, e.g., the triangular Lagrange basis, is
of course possible.

3.1 Bézier Curves

Letc: [0,1] — RZ be a Bézier curve of order n, i.e., a polynomial
curve represented in the Bernstein basis. Let its coefficients be the
control points (P, . .., pn). The control vectors of this curve are the
vectors (p1—po, - - -, Pn—pPn—1) (Fig. 3). We assume throughout that
curves are always (re)parameterized over [0, 1] such that c(0) = po
and ¢(1) = py.

Definition 3.1 (Control angle). We define the control angle zc¢ of
acurve c as Zc = max(|Zp1poPnl, | LPn-1PnpPol), ie., the larger of
the two angles formed by the curves’ end tangents with the curve’s
base line popn.

Definition 3.2 (Control width). We define the width w(c) of a
curve c as the distance between its first and last control point, i.e.
w(c) = |lpn = poll-

Input Assumptions. Input to our method is a set of order n Bézier
curves (domain boundaries and possibly feature curves); curves of
mixed order are raised to common order n. We assume these are reg-
ular (non-vanishing derivative) and no two curves meeting at a joint
form a zero angle. These assumptions are necessary requirements
for curves to be part of any injective polynomial triangulation [Man-
dad and Campen 2020a]. In cases where the domain to be meshed
is a bounded subset of R?, the angle criterion can be relaxed in
the sense that zero-angles outside of the domain are ignored. We
furthermore assume that the input curves intersect only at their end
points, which can be ensured by splitting at other intersections.

Fig. 4. Left: triangular region bounded by linear (red, green) and curved
(blue) edges. Center: linear edges elevated to the same degree (here n = 4).
Right: the inner control points are computed as affine combinations of outer
control points via generalized barycentric coordinates (cf. Construction 3.1).
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3.2 Bézier Triangles

Let f : A — R2? be a Bézier triangle of order n, i.e., a bivariate
polynomial in the simplicial Bernstein basis over some triangular
domain A. Let its coefficients be the control points {p;; | i > 0,j >
0,i+j < n}. Those control points p;; withi =0, j = 0,0ri+j = nwe
call outer control points; the remaining ones inner control points.

Construction 3.1 (Barycentric Extension). Given outer control
points for an order n Bézier triangle (Fig. 4 center), we define an
extension to the interior by computing each inner control point’s
position as an affine combination of the outer control points. For an
inner control point (red) the affine combination

weights are determined as its generalized barycen-

tric coordinates in a linear reference configuration.

While various choices are available, empirically

cotan coordinates [Pinkall and Polthier 1993] com-

puted relative to the edge control points (blue) of an equilateral
triangle elevated to the same degree (degree 4 in the inset example)
produce results slightly favourable to alternatives like mean value
coordinates for our purpose. It is important though that coordi-
nates offering linear reproduction are chosen; this is exploited to
guarantee certain convergence properties (cf. Prop. 4.3).

We will employ this construction for triangles with one or more
straight edges (in addition to curved edges of polynomial degree n).
In this case we impose a linear parametrization and elevate the
degree to n, i.e., we use uniformly distributed control points along
these straight edges. Fig. 4 illustrates this construction for a degree 4
example. The question of injectivity and distortion of such a higher-
order triangle is considered in Sec. 4.1.

3.3 Quality Measures

We consider two main triangulation quality measures and provide
adjustable bounds on these: the scaled Jacobian and MIPS distortion.
This choice was made on the grounds that the so-called scaled
Jacobian measure has been identified as the key measure relevant
in the context of FEM [Engvall and Evans 2020], and the MIPS
distortion (with respect to an ideal, equilateral element) is closely
related to PDE solution error [Schneider et al. 2018].

3.3.1 Scaled Jacobian. The scaled Jacobian of a Bézier triangle f,

following [Engvall and Evans 2020] and [Dey et al. 1999], is defined
min |det J|

max |det J |’
are computed over the entire triangular domain A. When f is non-

injective, its scaled Jacobian is 0; for a linear f it is 1. Note that
the term scaled Jacobian is also used with different meaning, in
particular when referring to a quality measure for quadrilateral and
hexahedral elements [Knupp 2000].

as where J is the Jacobian of map f, and min and max

3.3.2  MIPS. The MIPS distortion [Hormann and Greiner 2000] of

f is defined pointwise as %. MIPS distortion is minimal (= 2) iff
is conformal (angle-preserving), and goes to infinity with increased
angle distortion. Note that equivalent measures are in use under
different names. For instance, the isotropy measure considered in

[Johnen et al. 2016] is, up to a constant, simply the inverse of MIPS.

Our approach is quite flexible and further measures that might
be relevant for particular applications could be taken into account
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Fig.5. Left: curved guarding triangles of [Mandad and Campen 2020a] along
a given curve (blue). The triangles possess injective geometric maps by
construction but their distortion is not considered. This results in arbitrarily
sharp angles, not only inside but also in between such triangles. Right: our
envelope triangles. Both inner and outer angles are bounded (here within
[30°,120°]) and all geometric maps satisfy prescribed distortion bounds.

under certain convergence conditions. For instance, the magnitudes
of higher derivatives can be of relevance [Engvall and Evans 2020];
these could be taken into account as well. In particular, Propositions
4.3 and 4.5 easily extend to include the statement that these higher
derivatives converge to 0 in our algorithm’s framework, i.e., arbi-
trary upper bounds on these could be prescribed as well. To keep
the exposition simple we focus on the above two main measures.

4 ENVELOPING THE CURVES

At the heart of our method is the construction of so-called envelopes,
defining a spatial transformation in the vicinity of the input curves.
This ultimately enables us to leverage linear mesh generation tech-
niques, before transforming the linear mesh into a higher-order
curved mesh satisfying all the desiderata.

4.1 Curve Envelopes

In this section, we introduce an algorithm to construct a series of
quadrilateral elements enveloping a given curve ¢ of degree n. Each
such element has two opposite corners lying on the curve (Fig. 5
right). We associate each element R with a continuous warp map
g : R — R that preserves the boundary of R. To this end we view
the quadrilateral as union of two triangles R = Ag U A1, such that
the splitting diagonal connects the two on-curve corners.

Definition 4.1 (Warp Map). On a triangle A; of the envelope ele-
ment R of curve ¢ the warp map g is a higher-order triangular Bézier
map of degree n. This map g|,, : 4; — R? is defined via barycentric
extension (Construction 3.1) of the two non-diagonal edges of A;
and the curve c.

Notice that Ag and A1 overlap along the diagonal. Their respective
warp maps agree on this diagonal (its common image is the curve
¢), i.e., the combined map is well-defined and continuous (C°) on R.
Intuitively speaking, each quadri-
lateral envelope element is formed
by the union of two curved tri-
angles (with degree n geometric
maps), one on each side of ¢, both
conforming with the curve.

The idea to define an envelope element for a given curve is to
choose the position of the apex (the off-curve corner) of each of the
two triangles such that

7 T
9



Fig. 6. Given angle parameter ¢, the apex point o for a curve’s side is
chosen based on three different scenarios, depending on the curve’s end
tangents relative to the base line. From left to right it subtends an angle of
180° —2¢— 01 —02, 180° —2¢, and 180° —2¢ — 64, respectively. This angle is at
least ¢ (and therefore the apex valid) as long as 0; + 6, < 180° -3¢ (left),
0 < 180°—3¢ (center) or 8; < 180° -3¢ (right).

e warp map g is injective (and thus a homeomorphism R — R)
and satisfies bounds on its distortion,

e corner angles formed within and between envelope elements
respect a lower bound,

e envelope elements are mutually disjoint.

The latter two properties are required to enable a high quality linear
triangulation aligned to these envelopes in a subsequent step of our
overall algorithm (cf. Sec. 5.2), as illustrated in Fig. 2e.

It is easy to see that a curve cannot generally be covered by a
single envelope element satisfying these requirements. Instead, we
use a series of such elements. To this end the curve is bisected
recursively in an adaptive manner until each sub-curve permits a
single proper envelope element. Therefore, the key is to design the
envelope element construction such that under bisection the above
requirements will eventually be satisfied in any case.

Construction 4.1 (Apex point). Given a curve ¢ with control points
(pos - - -, pn) and angle parameter ¢, a valid apex point o for an
envelope triangle is one such that all three inner angles of the
curved triangular region formed by segments p,0, 0po, and curve
¢ are in the range ® = [, 180°—2¢], i.e.,

Lpnopo €D, Lopop1 €D, <Lpn-1pno € D.

Among all valid apexes o0 we choose one that forms a small envelope
triangle. Concretely, at the curve’s end points, po, pn, we rotate by
angle ¢ and —¢, respectively, either the curve’s end tangent or the

curve’s base line, depending on their relative position (see Fig. 6).

The intersection point of these two rotated lines is chosen as apex.

We discuss the choice of the parameter ¢ (dependent on the
desired output mesh quality bounds) in Sec. 5.1. Note that not for
all ¢ and ¢ a valid apex exists; the above intersection point may not
exist or may lie on the curve’s wrong side. However:

PROPOSITION 4.2 (APEX EXISTENCE). For any ¢ < 60° repeated
bisection of a curve eventually yields sub-curves that all have valid
apexes on both sides.

Proor. This follows from convergence of control polygons to a
flat state under repeated bisection [Li et al. 2012; Morin and Goldman
2001]. Concretely, in Fig. 6 the angles 8; converge to 0, enabling an
isosceles triangle po pno with base angles ¢ in the limit. O

We note that a similar adaptive enveloping idea was used in

[Mandad and Campen 2020a], based on guard triangles (see Fig. 5).

Guaranteed-Quality Higher-Order Triangular Meshing of 2D Domains + 154:5

Fig. 7. Left: computing the inner control points (red) as weighted corner
averages based on the rule p;; = %Poo + %Pno + ﬁpgn here results in
a non-injective map. Middle: computing them via barycentric extension
leads to lower distortion, here MIPS distortion 4.5. Right: By (non-linearly)
optimizing the inner control points one could reduce it even further (here
down to 3.8) albeit at a significantly higher cost.

In that case the focus, however, is purely on injectivity; angles and
distortion can be arbitrarily extreme. In our construction, by using
a different construction for the apex as well as for the inner control
points, we guarantee that all the inner and outer angles of envelopes
as well as the warp maps’ distortion are bounded.

With this definition at hand we can now show the following.

PROPOSITION 4.3 (ENVELOPE DISTORTION). Under repeated bisec-
tion of a curve the envelopes’ warp maps’ distortion behaves as follows:
the scaled Jacobian converges to 1 from below and the MIPS distortion
converges to 2 from above.

Proor. Under repeated bisection each sub-curve’s control poly-
gon does not only converge to a flat state [Li et al. 2012; Morin and
Goldman 2001] but also to same-length control vectors, i.e., control
points are equidistant in the limit (Appendix A). The limits of the
Bézier triangles forming the envelopes therefore are linear isosceles
triangles with base angles ¢, isometric to their respective domain
triangle A;. Due to being linear, the Jacobian is constant, the scaled
Jacobian measure is 1. Due to being isometric, the MIPS distortion
is 2. O

Note that a positive scaled Jacobian implies det J # 0, therefore
a locally injective warp map. As a curve intersecting its own en-
velope’s edges implies det J = 0 somewhere, this extends to global
injectivity due to the envelope triangle’s non-intersecting boundary.

We note that one may choose the inner control points defining
the warp maps (Def. 4.1) based on other rules than the barycentric
extension from Construction 3.1, for instance, simply as weighted
averages of the corner points. The only requirement is convergence
to alinear map as the edges become linear. We opted for the barycen-
tric extension as it empirically generates maps with significantly
lower distortion, at a low cost, as illustrated in Fig. 7.

PROPOSITION 4.4 (OUTER ANGLES). Under repeated bisection of a
curve the envelope’s outer angles (between adjacent envelope elements)
converge to 180° — 2¢.

Proor. The outer angle f is related to ¢ and the sub-curves’
control angles as follows: § > 180° — 2¢ + Zc¢1 + Zc3 (as illustrated
in Fig. 8). The signs depend on the curve being convex or concave
at the respective point. Under repeated bisection, both Zc¢; and Zcy
converge to 0 (cf. Prop. 4.2), resulting in the stated limit. O
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2

Fig. 8. The outer angle between our envelopes along a curve are related (in
the worst case) via 2¢ + Zc1 + Zcz + f = 180°, where Zc; and Zc, denote
the two sub-curves’ control angles (Def. 3.1). Repeated bisection eventually
ensures that all outer angles are in the range [¢, 180° — 2¢].

4.2 Corner Envelopes

At joints, i.e., points where two or more curves meet and intersect
at their end points, a different treatment is required whenever a
corner of angle ¢ < 3¢ is formed. This is because the outer angle
bound of Prop. 4.4 only holds between envelope elements of one
curve (or of C'-continuous curves). At corners of angle ¢ < 2¢ the
two curves’ envelopes would overlap regardless of bisection level.
For 2¢ < ¢ < 3¢ they might not, but they would form an outer
angle smaller than ¢, adversely affecting the quality of the linear
triangulation (Sec. 5.2). Even for corners somewhat larger than 3¢,
a lot of curve bisection may be necessary to reach satisfactory outer
angles. We therefore conservatively treat corners of angle ¢ < 4¢
differently, avoiding excessive refinement.

At such corners we construct special corner envelopes. Intuitively,
the two curve envelope triangles in a corner are replaced by one
shared triangle—equipped with a Bézier map that conforms to two
curved edges and one straight segment (Fig. 9).

Construction 4.2 (Corner Envelope). We intersect the two curves
c1, ¢z forming a corner with a circle of radius r around the com-
mon end point py (Fig. 9 center). Such a circle intersection was
used previously to handle small input angles, in linear and curved
meshing [Boivin and Ollivier-Gooch 2002; Ruppert 1995]. The two
intersection points ¢1, q2 and the joint point pg form a triangle A
over which we define, in analogy to Definition 4.1, a warp map g. It
is built via barycentric extension of the two curved edges formed
by ¢1 and ¢z between pg and q1, g2, and the straight segment q1q2.

PROPOSITION 4.5 (CORNER ENVELOPE DISTORTION). Asr — 0 the
corner envelope’s warp map’s distortion behaves as follows: the scaled
Jacobian converges to 1 from below, the MIPS distortion converges to 2
from above. Further, the outer angles (« in Fig. 9) converge to 90°+4/2.

Fig. 9. Left: when each curve is enveloped individually (as in [Mandad
and Campen 2020a]) in corners this implies either overlaps or small angles.
Center: we treat such corners specially, with leverage on both interior and
exterior angles (Construction 4.3). In the limit of r — 0 outer angles a are
>90°. Right: as a result, the (possibly sharp) corner angle does not degrade
further and the remainder of the curves can be enveloped as before (Sec. 4.1).
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Fig. 10. If corner angle ¢; between two curves is larger than 180° —2¢,
we bisect it by introducing a virtual curve (dashed). The joint can then be
enveloped as in Sec. 4.2. In case the angle (¢2) is larger than 4¢, no special
treatment is required; we can envelope the curves’ sides following Sec. 4.1.

Proor. The proof of distortion limits is analogous to that of
Proposition 4.3: the limit is a linear isosceles triangle with, in this
case, base angles 90° — ¢/2 (and third angle ¢). As a consequence,
the outer angles converge to 90°+ ¢/2. O

The remainder of the curves (beyond g;) is then enveloped as
described in Sec. 4.1 (Fig. 9 right).

Complex Joints. When more than two curves meet at one joint,
forming multiple corners, a common radius r is used (initialized
to the minimum of incident curves’ control widths) in the corner
envelope constructions so as to yield conforming elements.

Obtuse Corners. At corners of angle ¢ < ¢ (where ¢ is the param-
eter used in Construction 4.1), the envelopes exhibit inner angles
smaller than those of curve envelopes in the limit. This is inevitable
given the prescribed sharp corner. At corners of angle ¢ > 180°—2¢
the use of a single corner envelope triangle would likewise imply
smaller angles. This, by contrast, can be avoided. To this end, we
split corners with ¢ > 180°— 2¢ but ¢ < 4¢ in advance by inserting
short virtual bisecting curves (Fig 10).

4.3 Numerics

Many of the operations required to implement the above curve and
corner envelope construction (such as curve bisection, barycentric
extension) are rational calculations. This opens up possibilities to
implement the method using exact rational arithmetic if desired—so
as to avoid any potential numerical issues arising due to the limited
precision of floating point arithmetic. Two operations, the apex
construction and the circle intersection, however, are not generally
rational and therefore require special attention to enable this.

The apex (Construction 4.1) is constructed by intersecting two
lines (the base line or the end tangents, depending on the three
different scenarios illustrated in Fig. 6) that are rotated by ¢. By
instead of ¢ using tan ¢ as parameter, and setting it to a rational
value, the lines’ rotation and intersection can be computed without
numerical inconsistencies in the rational numbers.

For corner envelopes (Construction 4.2) we need intersection
points between circles and polynomial curves. These are irrational in
general. We can, however, use curve points with rational coordinates
as substitutes instead, as long as they are sufficiently close to the
true intersection points. Concretely, we use a curve point c(t), for
rational parameter ¢, and let ¢ converge to the true circle intersection
parameter in the rationals, until angle conditions are met that are
relevant for the corner envelope construction in Sec. 4.2:



Fig. 11. Left: Two curves ¢; and c; meeting at their end point py at an
angle ¢. s; and q; refer to points on the curve ¢;, chosen such that [|po—
si|l < r < |lpo—qill- All marked angles (¢, «, 8, y) are with respect to
the curves’ tangents at the corresponding points. Algorithm 1 tightens the
points s;, g; (and reduces r if necessary) until the outer angles «; satisfy
90° < a; < 180°—¢, as desired. Right: The same algorithm can also be used
to envelope a joint where multiple curves meet by sharing s;, g; and r.

Algorithm 1: Rational Corner Envelope

Function CORNERENVELOPE(c1, €2, ¢):
while true do

1 ify1 <o Vya<g¢V § <90° V § <90° then
2 )
3 ci.tg — 0
4 cy.ts — 0
5 else if a1, ay ¢ [90°,180°—¢] then
6 €1.TIGHTEN_T(r?)
7 €. TIGHTEN_T(r?)

else

| return (g1 = c1(c1.tg), g2 = c2(c2.tq))

Function TIGHTEN T(r?):
totty
te 2
if ||po — c(t)||? = r? then
‘ tq — t
else
| ts et

Construction 4.3 (Rational Corner Envelope). Given two curves
c1=(po.pl..... py) and ¢z = (po, p%,..., p2) intersecting only at
their common end point py, we define a pair of parameters (! =
0,t} = 1) for each curve ¢;, (i = 1,2). Let s; = ¢;(t}) and q; = ci(tf])
be the respective curve points (Fig. 11 left). We initialize radius r? =
min{w(cy), w(cz)}? (cf. Def. 3.2). Using Algorithm 1, the two ranges
[, té] are then iteratively tightened around the true intersection
parameter associated with the circle of radius r. Upon termination,
the points g1, g2 are suitable rational substitutes:

PROPOSITION 4.6. Assuming corner angle ¢ <180°—2¢ (which we
ensure, Sec. 4.2), Algorithm 1 terminates. Upon termination, the outer
angles a; are obtuse, the opposite inner angles are > ¢.

PrROOF. Asr — 0, the sub-curves contained in the circle converge
to straight lines. Consequently, the first condition (line 1) must
become false below some r > 0, regardless of t, tq- Therefore the
first conditional block (r?-halving, lines 2-4) will only be executed
a finite number of times. The second conditional block (lines 6-7)
tightens s; and ¢; around the true circle intersection point. Notice
that under this tightening §; converges to «; from above, and 180°—y;
converges to «; from below. This implies that repeated execution of
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this tightening will eventually lead to either a; € [90°, 180°—¢] (in
which case it terminates, line 5) or to violation of the first condition
(line 1)—which can only occur a finite number of times. |

The angle conditions in lines 1 and 5 can be checked exactly based
on the rational tan ¢ parameter and simple dot products.

The algorithm readily extends to handle multiple corners (at joints
where more than two curves meet) simultaneously (Fig. 11 right).

5 GUARANTEED-QUALITY CURVED TRIANGULATION

Equipped with the definitions and algorithmic components intro-
duced above, we can now formulate our overall algorithm.

5.1 Input

The input to our algorithm is a set of 2D polynomial curves, satisfy-
ing conditions stated in Sec. 3.1, and parameters p and y correspond-
ing to the desired bounds the output triangulation shall respect in
terms of scaled Jacobian and MIPS distortion, respectively.

In accordance with the best lower angle bound that is currently
offered by linear constrained mesh generation techniques [Rand
2011b], we fix the parameter ¢ = 28.6° in our envelope construction.
This ensures that the envelopes, away from sharp curve corners, do
not form any smaller (neither inner nor outer) angles. In this way the
quality of the linear envelope-constrained triangulation we make
use of is not forced to deteriorate. In case of future improvements
in this field, ¢ could readily be adjusted (up to 45°) accordingly.

We denote the MIPS distortion (relative to an equilateral element)
associated with the worst case triangle that could occur in a linear
triangulation with minimal angle bound ¢ as p,. For the above
angle bound we have pi,, = 3.4915... = 3.5 (Appendix B). The desired
bound y on the curved output mesh can be set to any value larger
than . One of the key responsibilities of our algorithm then is to
ensure that the distortion of the envelopes’ warp maps g is below
some threshold yi;. In Sec 5.4 we discuss how this threshold needs
to be set, dependent on i, 50 as to guarantee bounded distortion y
in the output—in addition to respecting the other quality bounds.

5.2  Complete Algorithm

Given a set of input curves and quality bounds we perform the
following steps (cf. Fig. 2):

(1) Construct corner envelopes (Construction 4.2 or 4.3) and split
the curves at the chosen corner envelope vertices.

(2) While there is a (sub-)curve such that any of the following
conditions hold, bisect it. In the case of a corner curve, instead
recompute its corner envelopes starting from a halved radius.

(a) valid apex points do not exist (Construction 4.1).

(b) an outer angle between its envelope and an envelope of a
neighbor curve (with smaller control angle) is < ¢ (Fig. 12).

(c) the MIPS distortion of its envelope’s warp map is > pg.

(d) the scaled Jacobian of the warp map is not bounded by p.

(e) its envelope element intersects another envelope element
of equal or smaller size (area).

(3) Compute angle-bounded linear mesh constrained by the seg-
ments (including diagonals) of all envelope elements.

(4) Obtain the output higher-order mesh by applying the warp
map to all the linear triangles lying inside the envelopes.

ACM Trans. Graph., Vol. 40, No. 4, Article 154. Publication date: August 2021.
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Fig. 12. Step (2b) of our algorithm ensures that (besides the envelopes’ inner
angles) the angles between two consecutive curve envelopes along a curve
(left), and the angle between a corner envelope and a curve envelope (right)
are at least ¢. This ensures that the lower angle bound of ¢ can be respected
(away from sharp corners) in the linear mesh.

In the final step (4), for a mesh triangle that corresponds to an
entire envelope triangle, applying the warp map simply means re-
placing it by this envelope triangle’s warp map (which is a Bézier
triangle, see Def. 4.1). For a mesh triangle that is just a part of an
envelope triangle an explicit Bézier representation of its warped
counterpart can be obtained as a part of this warp map Bézier trian-
gle through subdivision (Appendix C). Note that the resulting mesh
has straight edges outside and, in general, curved edges inside the
envelopes (see, e.g., Fig. 26 top right).

The result is a mesh conforming to each curve from both sides.
If the input curves form a closed domain, exterior triangles can be
discarded in the end, or—more efficiently—already the envelope
construction be restricted to the interior, as done in Figs. 1, 20, 25.

5.2.1 Strict Bounded Distortion Tests. In steps (2c) and (2d), we need
to test whether a given higher-order map (in the form of a Bézier
triangle) satisfies certain distortion bounds. In contrast to the linear
setting, where the Jacobian is constant, in a higher-order triangle
distortion varies pointwise. To ensure that the input bounds are
respected everywhere, one can exploit the convex hull property
of the Bernstein basis to test this conservatively. For the scaled
Jacobian this has been spelled out before [Engvall and Evans 2020].

We exploit this property to additionally devise a conservative test
for the upper bound on MIPS distortion, i.e., max(||J||?/det J) < Hg
over the domain. We make use of the relation

I max |l
det] ~ mindet] g

and test for the second inequality. Each entry of the Jacobian matrix
is a polynomial of degree n — 1. Hence, both || J||? and detJ are poly-
nomials of degree 2(n—1). By expressing them in the Bernstein basis,
owing to the convex hull property the numerator’s maximum (the
denominator’s minimum) over the triangular domain is bounded
from above (below) by the maximum (minimum) of its coefficients.
The coefficient computation for the denominator is spelled out in
[Mandad and Campen 2020b], for the numerator in Appendix D.

By virtually subdividing the domain triangle, these two bounds
can be tightened [Leroy 2008], reducing unnecessary curve bisec-
tions. We choose to adaptively use up to 10 levels of subdivision
before declaring a map possibly violating the distortion bound.

5.2.2 Envelope Intersection Test. In step (2e), to avoid a naive pair-
wise test for envelope element intersection, an obvious approach is
to employ a spatial search data structure, like an interval tree of the
envelopes’ bounding boxes. This is also done in the implementation
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Fig. 13. Left: non-intersecting but close-by envelopes may result in very
small local feature size resulting in very dense meshes. Right: through curve
bisection the local feature size is increased between such envelopes, overall
resulting in a simpler output mesh.

provided by the authors of [Mandad and Campen 2020a], where
mutual intersections of envelope-like elements (called guards) need
to be determined.

We propose an even more efficient acceleration tailored to our
setting, using constrained Delaunay triangulation (CDT). We ini-
tially build a CDT of all input curves’ end points. Each curve keeps
pointers to its two corresponding CDT vertices. During the algo-
rithm, we then add, one by one, the envelope elements’ segments
(using the vertex pointers of its curve for constant-time location)
as constraints to the triangulation [Boissonnat et al. 2000]. If a con-
flict is discovered, i.e., as soon as two constraint segments intersect,
curve bisection (step (2)) can be performed, the outdated constraint
segments be removed from the CDT, and the algorithm can proceed.

As a demonstration of the significant benefit, we modified the
implementation of [Mandad and Campen 2020a] to use this CDT ap-
proach instead of a bounding box tree. The run time for this slowest
step of their algorithm improved by a large factor, see Table 1.

As an additional benefit, the final CDT can be re-used as initial-
ization for step (3)—which then reduces to improving the angles of
this CDT triangulation via incremental Delaunay refinement.

Table 1. Comparison of timing (in milliseconds) for Step 2 (ensuring disjoint
triangles) from [Mandad and Campen 2020a, §5.5] between the original
approach and our CDT approach (Sec 5.2.2), on three example inputs of
increasing complexity.

Number of Curves = 10 100 1000
ORIGINAL (USING AABB TREE) 20.8 411.3 6010.6
Ours (usinGg CDT) 4.0 61.7 400.7

5.2.3 Envelope Margins. The complexity of the angle-bounded lin-
ear mesh created in step (3) depends on the constraint segments’
local feature size. There can be cases where two envelopes are very
close, implying a small local feature size, leading to high mesh den-
sity. We can avoid this by performing the intersection test, step (2e),
between non-adjacent envelope elements with a margin. The effect
is illustrated in Fig. 13. This margin must be relative to the elements’
size so as to maintain termination properties. Concretely, we check
whether the distance between two envelope elements is smaller than
a factor A of their largest segment length—but ignore the case where
this minimum distance is attained between two on-curve vertices of
these envelopes, as these are invariant to further bisection. A choice
of 1=0.2 is used in all of our experiments.



5.3 Termination

Termination of step (1) (initial corner envelope construction) follows
directly from Prop. 4.6.

Step (2) terminates because all conditions that trigger further
curve bisection (or corner radius reduction) will no longer be met
after a certain level of bisection. For condition (a) this follows directly
from Prop. 4.2, for condition (b) from Prop. 4.4 and Prop. 4.5/4.6. For
the distortion conditions (c) and (d) Prop. 4.3 and Prop. 4.5 provide
the respective guarantees. Intersections considered by condition
(e) will vanish because two adjoining envelopes (along a curve) do
not intersect (except at their shared vertex) due to Prop. 4.4 and
because bisecting curves or decreasing the corner envelope radius
reduces the envelopes’ size; eventually they will be smaller than
the local feature size between any two disjoint curves and therefore
non-intersecting. By, in case of conflicting envelopes, choosing for
bisection the curve with larger control angle (2b) or larger envelope
area (2e), it is ensured that all curves involved in violations will
eventually be bisected.

Step (3) involves using existing linear constrained meshing algo-
rithms, such as [Miller et al. 2003], which come with convergence
guarantees. As a result, the overall algorithm will terminate and the
output will satisfy the expected properties by construction.

5.4 Quality Guarantees

While it is obvious that all the desired quality bounds are satisfied
by the linear triangulation with angle bound ¢ generated in step
(3) (which has scaled Jacobian 1 and MIPS distortion no larger than
Uy away from sharp corners), we still need to show that they are
respected after applying the warp maps to triangles inside envelopes
in step (4).

The Bézier map defining a warped triangle of the final mesh
(whose distortion properties we are interested in) can be viewed
as the composition g o ¢ of a linear map ¢ from an ideal equilateral
triangle to the linear mesh triangle (an envelope triangle or part
thereof) with the warp map g, as illustrated in Fig. 14.

As the linear map ¢ has a constant Jacobian, the composite map
adopts the scaled Jacobian of the warp map g—which is bounded
due to condition (d) in algorithm step (2). Regarding MIPS distortion:
that of £ is bounded by p,, (except at sharp corners) due to the linear
triangulation minimal angle bound (Appendix B), that of g by
due to condition (c) in algorithm step (2). We now derive how the
threshold ji; needs to be chosen such that the MIPS distortion of
the composite map is bounded by : as prescribed.

5.4.1 Choice of Warp Limit jiy. Let 01 > o3 be the singular values
of the Jacobian of overall map g o £. Bounded MIPS distortion in
the output mesh then means that this is supposed to respect o1/a, +
02/oy < p. This is equivalent to

o _ V-4

oy 2
Similarly, let af > ag and O‘f > 0‘;] be the singular values correspond-
ing to the linear and the warp map, respectively. Clearly, o1 < o{ 0'19
and oy > ag O‘g , and therefore o} [og = vaf/azaf . Together, this
yields that g o £ has MIPS distortion < y if (but not only if) the
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60°

Fig. 14. The overall geometric map of a curved triangle is a composite of
linear map ¢ from an equilateral triangle to a linear mesh triangle (center,
white or blue) with warp map g. Due to angle bounds in the linear triangu-
lation (center), MIPS distortion of £ is at most . By construction of the
envelopes, MIPS distortion of g is bounded by pig. We choose 14 such that
the distortion of the overall map is guaranteed to be bounded by p.

MIPS distortion of g is bounded by:
I N e RN T
Hg = + )
Mo+ =4 H -4
i.e., based on p, this is the parameter we use in condition (c) of
step (2).

At sharp curve corners of angle ¢ < ¢ formed by input curves,
the constrained linear triangulation of course inevitably contains
inner angles smaller than ¢. Using the y values corresponding to
the concrete corner angles instead of y, in the above formula, one
can derive stricter individual bounds i, for each corner envelope’s
warp map, essentially for compensation—within certain limits of

course: at corner angles ¢ where y already is larger than y this
would ask for yy < 2, which cannot be achieved.

Fig. 15. Our method’s output for g = 10.0, p = 0.5 on examples from the
ABCD datasets of challenging random curve configurations [Mandad and
Campen 2020a]. Left to right, top to bottom: A: C’-domains, B: C'-domains,
C: isolated curves, D: curve networks with numerous corners.

ACM Trans. Graph., Vol. 40, No. 4, Article 154. Publication date: August 2021.
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Fig. 16. Histograms (log scale) of scaled Jacobian over result meshes’ curved
triangles for datasets A, B, C, D (left to right, top to bottom) for bound
p = 0.5. We distinguish values of triangles in curve envelopes (blue) and in
corner envelopes (red).

Fig. 17. Histograms (log scale) of MIPS distortion over the result meshes
for datasets A, B, C, D (left to right, top to bottom) for bound p = 5.0. The
red, blue, and green colors correspond to values on triangles belonging to
corner envelopes, curve envelopes, and the rest of the domain, respectively.
Notice that only values on corner triangles (red) lie beyond the bound.

Curved Angle Bounds. Note that since all angles in the linear
triangulation are bounded by ¢ (except at sharp curve corners) and
the angle distortion (MIPS) of warp maps is bounded by 1, the final
curved triangles have bounded angles as well (Appendix E).

6 RESULTS

We test our method on the four datasets (ABCD) of 1000 config-
urations of input curves each, with varying characteristics, from
[Mandad and Campen 2020a]. Fig. 15 shows example results on one
case from each dataset.

Validation. In Fig. 16 we show histograms of the scaled Jaco-
bian accumulated over output meshes obtained when applying our
method to the ABCD datasets. It can be observed that the generated
higher-order meshes indeed do not contain any elements with a
scaled Jacobian value below the set bound of p = 0.5.

In Fig. 17 analogously histograms of the MIPS distortion are
shown. As expected, in those datasets that contain sharp corners of
angle < ¢ (datasets A, C, and D) there are MIPS values beyond the
set bound of i = 5.0, but those are strictly confined to triangles in
corners (red) where this is inevitable.

Timing. In Table 2 a breakdown of run times relative to the choice
of p is given. It can be observed that for very high quality require-
ments (i close to the limit of 3.5), the adaptive envelope refinement
until warp maps are of sufficiently low distortion accounts for the
largest share. For loser bounds run time decreases quickly, and the
envelope intersection test (2e) remains as dominating item.
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Fig. 18. MIPS distortion bound y vs mesh complexity, average of dataset A.

The plot in Fig. 18 illustrates how the number of envelope el-
ements, the number of sub-triangles inside envelopes after con-
strained linear meshing, and the total number of triangles in the
output mesh depend on the choice of .

Comparison. In Fig. 19 differences to the method from [Pav and
Walkington 2005] are illustrated. That method handles curved input
constraints as well and yields coarser meshes than our method.
However, it does not output a polynomial representation of the
curved triangles, nor does it guarantee the existence of injective
polynomial maps. In the blow-ups it can furthermore be observed
that the method may split sharp input corners further, producing
very small as well as large angles. Our dedicated corner enveloping
prevents further quality deterioration at curve corners.

Table 2. Average timing (in seconds) over all 1000 instances from dataset A
for various MIPS quality bounds p.

py= 4.0 4.5 5.0 10.0 20.0 50.0
StEP (1) 0.1 0.1 0.1 0.1 0.1 0.1
STEP (2a-d) 91.4 16.9 8.7 0.7 0.3 0.1
STEP (2e¢) 24.6 29.4 5.7 2.4 2.2 2.4
STEP (3) 5.4 1.3 0.8 0.2 0.1 0.1
TotaL TIME 121.5 47.7 15.3 3.4 2.7 2.7

N
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Fig. 19. Left: result of [Pav and Walkington 2005] on an example input.
Right: result of our method. Notice in particular the quality difference in
the lower blow-ups. Note: the original input contained zero angles which
we remedied by slight perturbation.
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Fig. 20. Left: Result of Bézier Guarding [Mandad and Campen 2020a] on a
given curve configuration. Right: Our result (for 4 = 5.0 and p = 0.2). MIPS
and scaled Jacobian histograms (log scale) are shown below. Linear triangles
are excluded from the scaled Jacobian histograms for clarity.
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Fig. 21. Higher-order mesh optimization towards a target edge length,
as described in [Mandad and Campen 2020a], following [Hu et al. 2019],
applied to the results from Fig. 20. While some quality improvement (see
the histograms) is achieved on the output of [Mandad and Campen 2020a]
(left), guarantees about the amount of improvement are unavailable. In case
of our output (right), we are able to preserve the quality guarantees.

Fig. 20 shows an example comparison of our proposed method
to the recent method from [Mandad and Campen 2020a]; for an
aggregate comparison over the entire ABCD dataset see Appendix F.
That method guarantees polynomial triangles with injective geo-
metric maps. It does not, however, consider distortion in any way.
We observe many triangles with scaled Jacobian close to 0, down
to 7-107>, and MIPS values up to 8-10%. This is in stark contrast
to the strictly bounded distortion guaranteed by our method. On
the downside, a denser triangulation is generated to achieve these
quality benefits.

Let us point out that [Mandad and Campen 2020a] propose a
subsequent remeshing and optimization procedure. While this may
commonly reduce distortion (see Fig. 21 left), it does not provide
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Fig. 22. Histograms (log scale) of aggregated MIPS distortion and scaled
Jacobian for output meshes generated by TriWild [Hu et al. 2019] (left) and
our method with p =5 (right).

guarantees and may even be hampered by the poor numerical con-
dition of the initial triangulation with arbitrarily high distortion. In
contrast, when the mesh respects quality bounds due to our method,
by omitting mesh modification operations that would break the
bounds in the remeshing process we can yield a simplified mesh
that still respects the desired bounds (Fig. 21 right).

Fig. 22 shows a distortion comparison to the TriWild method [Hu
et al. 2019] aggregated over inputs from that paper’s OpenClipart
dataset. It becomes apparent that, like the above, this method offers
no quality bounds. Furthermore, while our method conforms to
all input curves by construction, this method may trade a small
amount of curve conformance to be able to guarantee injectivity, as
discussed in [Hu et al. 2019, §4.2] and illustrated in [Mandad and
Campen 2020a, §5.4] and Fig. 23. As an advantage, processing time
on this dataset is lower by an average factor of 2.1 with this method.

Parameter Effects. In Figs. 24 and 25 the effects of quality bound
parameters y and p are demonstrated separately. Note that due to
the way envelope elements are formed and inner control points are
distributed, there is some correlation between these measures, i.e.,
decreasing y has an effect related, but not identical, to increasing p.

As explained in Sec. 5.1 we fix the parameter ¢ (which controls
minimal inner and outer envelope angles as well as minimal linear
mesh angles) to 28.6° by default. A value that high allows driving
MIPS distortion down to 3.5. In cases where loser (higher) MIPS
bounds are sufficient, one may opt to use a lower ¢ value in the
method; e.g., for 4 = 20 we may decrease ¢ down to ~5° (Appendix B
spells out the relation). Furthermore, one may use a different ¢ value
for the envelope construction than for the linear mesh generator.
This results in output meshes of different characteristics in terms of
density and uniformity, as demonstrated in Fig. 26.

% 4\\6
=

Fig. 23. Even if the input is entirely regular and free of intersections, TriWild
[Hu et al. 2019] alters the input curves by clipping away parts to meet certain
separation criteria (left). As a result, the output mesh does not fully conform
to the input curves. Our method (right) ensures full conformance.
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Fig. 24. Top row: effect of decreasing p from 50 over 20 to 10 (while p = 0).
Bottom row: effect of increasing p from 0.1 over 0.5 to 0.7 (while p = ).
Envelopes are highlighted (light blue) for orientation.

Fig. 25. Top row: effect of decreasing p from 50 over 20 to 10 (while p = 0).
Bottom row: effect of increasing p from 0.1 over 0.5 to 0.7 (while pz = c0).

7 LIMITATIONS AND FUTURE WORK

Mesh Density. One of the application-dependent benefits of higher-
order meshes is the fact that they can be coarser than linear meshes
while still approximating a given boundary well, or even conform-
ing to it exactly. From that perspective the meshes resulting from
our method may be suboptimal and potentially too dense (cf. Fig. 30)
for some applications. Nevertheless, no method to generate coarser
higher-order meshes that offers quality bounds is available. We
therefore view our method as an important step and envision vari-
ous routes for follow-up work to address the aspect of parsimony.

One path is to use the guaranteed-quality results as starting point
for mesh decimation techniques that are tailored to preserve the
input mesh’s quality. As our method’s results commonly respect
the bounds with quite some margin in large parts, there is room for
simplification while preserving quality guarantees. As indicated in
Fig. 21 right, this general direction, which has not received much
attention yet, has potential and should be explored further.

As another avenue, adjustments to the various pieces of the al-
gorithm could be made, so as to directly yield simpler meshes. One
may strive to minimize the number of curve bisections (e.g., by par-
titioning curves based on curvature distribution); or the envelope
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Fig. 26. For simplicity we assumed a common lower bound ¢ for inner
envelope angles (Constructions 4.1 and 4.3), outer envelope angles (step
(2b)), and linear mesh angles (step (3)). By using separate bounds ¢;, ¢o,
and ¢y, respectively, output mesh characteristics can be influenced. A lower
minimal angle bound ¢, (bottom row) coarsens the linear mesh [Ruppert
1995], but at the same time implies a tighter yi4 (cf. Sec. 5.4.1), leading to
more curve bisections to guarantee meeting the desired bound p. A larger
value for @; (right column) reduces the amount of bisections needed to meet
g, but generates taller envelopes which may in turn intersect more often.

apex could be chosen (from the space of valid apexes) in a more so-
phisticated manner (e.g., attempting to share the apex with a nearby
(neighbor or opposite) curve, see Fig. 27; or outside of the envelopes,
where no warp map is applied, looser angle bounds could be used
in the linear triangulation, just to name a few options.

Finally, a more precise understanding of which mesh quality vs
mesh simplicity balance is favorable for which use case and which
quality measures are most relevant would be of value. This would
better inform further developments in this direction.

Extension to 3D. It will be interesting to explore generalization to
the 3D setting, where higher-order tetrahedral meshes are of interest
[Feng et al. 2018], so as to reduce the problem to that of constrained
linear tetrahedral meshing with guaranteed-quality [Cheng et al.
2012]. One challenge will be to deal with trimmed surface patches
in a practical manner, which are commonly used for the precise
representation of piecewise smooth 3D domain boundaries.

Fig. 27. Our method’s result between two curves, with disjoint envelopes
(left). Different choices of apex positions, e.g., shared with or on nearby
conflicting curves, as sketched here (center and right), could reduce the
number of curve bisections and as a result generate coarser meshes.
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A EQUIDISTANT CONTROL POINTS

W.l.o.g. consider the first sub-curve of a curve after ¢ repeated
subdivisions at parameter ¢ (0 < ¢t < 1). Its k-th control point is
p= Z?:o p,va? (t%). The distance between two consecutive control
points of this sub-curve is given by

k
|Phr = PLI = 1P BEEL(E) + Y pi(BE* () = BE ().
i=0

As ¢ — oo, the ratio of distances between consecutive control points
lpi=p5|/1p;.,,-p,| — 1. This, together with the convergence of the
control polygon to a flat state, shows convergence to a state of
uniformly distributed control points.

ACM Trans. Graph., Vol. 40, No. 4, Article 154. Publication date: August 2021.


https://arxiv.org/abs/1210.2686
http://eudml.org/doc/271633
https://arxiv.org/abs/1103.3903

154:14 + M. Mandad and M. Campen

o A

Fig. 28. Left: de Casteljau’s algorithm can be used to compute the control
points of the Bézier sub-triangles under 1-3 subdivision. Right: threefold
application yields the control points corresponding to any sub-triangle
domain [Prautzsch et al. 2013, §11.3].

B MIPS DISTORTION OF STRAIGHT-EDGE TRIANGLES

Consider the linear map that maps an equilateral triangle to a tri-
angle with angles 0y, 02, and 03 = 180° — 6; — 0. Up to a constant
factor, its Jacobian is

sinf3 cos 0y sin 6,
0 sin 01 sin 6

V3 -1
0 .
Its MIPS distortion therefore is given by
2
—(sin 8 csc 01 csc O3 + cot 6).
V3

This is a convex function over the convex domain 61, 0, 03 > ¢ (of
all triangles with inner angles at least ¢) so the maximum is attained
at this domain’s corners, where two of the triangle’s angles are ¢.
For a lower angle bound of ¢ = 28.6° this yields a worst case MIPS
value of 3.49159, slightly below 3.5.

C BEZIER TRIANGLE SUBDIVISION

Application of de Casteljau’s algorithm to evaluate a Bézier triangle
at an interior point yields (as byproduct) the control points of three
Bézier sub-triangles corresponding to a 1-3 subdivision, as illustrated
in Fig. 28 left. Threefold application allows to compute the control
points corresponding to any sub-triangle domain (Fig. 28 right).

D BERNSTEIN COEFFICIENTS OF JACOBIAN NORM
Assuming p;jx = (X;jk, Yijk), the Jacobian of the warp map g is

given by
J= [% %] []00 ]10] _|Ja Jb]
2 Lo Jul e Jal
where the second matrix represents the Jacobian of the mapping
from the domain triangle to a unit leg right triangle. The partial
derivatives [Farin 1986] are given by
ox

— n—1

" Z (X(i1) jk = Xij (k+1)) B
i+j+k=n—-1

ox n—1

pell Z (Xi(j+1)k = Xij(ks1)) B -
i+j+k=n—-1

The ijk-th coefficient of the squared Jacobian’s norm ||J||? =
]3 + ]g + ]C2 + ]3 in the triangular Bernstein basis is then constructed
by summing the squared corresponding individual entries

i1jk!
(]3)1'}'/( - Z ST oot + Jorx2) (Joox + Jorx2),

nlr!s!
[r]=ls|

r+s=(i,j,k)
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where r = (r1,r2,1r3), [r| = r1 +ra+r3, ! = rilralrs!, x denotes the
r-th control point of dx/au, analogously for the other entries of J.

E MINIMUM CURVED ANGLE

Consider one corner of angle 7 of some triangle, w.l.o.g. formed by
vectors (1,0) and (cos 7, sin 7), and its image under a continuous
map g. Via singular value decomposition, at the corner point, g is
a rotation by some angle 6 followed by a non-uniform scaling by
o1 and o3 followed by a second rotation (that we can ignore in the
following as it does not affect angles). Application of this map to
the two corner vectors yields

o1 0Hc059 —sin@Hl cosr]_

0 oy|[sinf@ cos@ ||0 sintT

o1cos@ opcos(0+71)
opsinf oy sin(6 + 1)

The angle 7’ between the two mapped vectors is

cot 7’ = 012 cos 0 cos(6 + ) + 2% sin @ sin(6 + 1)

o102 sinT

Differentiating wrt. § and equating to zero yields (02% —o1%) sin(26+
) = 0. Hence, the mapped angle is minimal (assuming o7 > 03, and
o = 0i/a,), regardless of the scaling, for § = —7/2 (and maximal
for 6 = 90° —7/2). The warped angle 7’ therefore is, regardless of
orientation, not smaller than

, ) ocos? T — o7 sin? £
7" = cot

sint

F ADDITIONAL COMPARISONS
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Fig. 29. Histograms (log scale) of MIPS distortion and scaled Jacobian of
Bézier Guarding output aggregated over the ABCD dataset. Top: immediate
output. Bottom: after subsequent remeshing and mesh optimization. In
contrast to our method’s results for the same input (see Figs. 16 and 17),
no bounds (other than det J > 0) are respected. Right: Scatter plot showing
processing time (ms) of Bézier Guarding (native « or with remeshing -)
relative to our method e (with p = 5) over the ABCD dataset cases.
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Fig. 30. Mesh complexity (number of elements) comparison scatter plots.
Left: Ours (x-axis) with g = 5 vs Bézier Guarding (y-axis). Each dot represents
one input case from the ABCD dataset. Center: Same, with looser bound
(MIPS < 300). Right: Ours (x-axis) vs TriWild (y-axis). Each dot represents
one input case from the OpenClipart dataset of [Hu et al. 2019]. On average,
our output has 7.8X as many elements.
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